PSO Algorithm with Chaos and Gene Density Mutation for Solving Nonlinear Zero-One Integer Programming Problems
نویسندگان
چکیده
By the penalty function methodwe transform zero-one nonlinear programming problems into unconstrained zero-one integer optimization problems. A particle swarm optimization algorithm with chaos and gene density mutation is given to solve unconstrained the zero-one nonlinear program problems. We use chaos to initialize populations and use the 0-1 integer operation in updating positions to produce 0-1 integer points. We use the fitness variance and gene density strategy to determine whether the population premature phenomenon or not. If it appears that we use the gene density mutation to increase the population diversity or restart and reset the population by chaos technique. Numerical simulations show that the proposed algorithm for most test functions is feasible, effective and has high precision.
منابع مشابه
Global optimization of mixed-integer polynomial programming problems: A new method based on Grobner Bases theory
Mixed-integer polynomial programming (MIPP) problems are one class of mixed-integer nonlinear programming (MINLP) problems where objective function and constraints are restricted to the polynomial functions. Although the MINLP problem is NP-hard, in special cases such as MIPP problems, an efficient algorithm can be extended to solve it. In this research, we propose an algorit...
متن کاملA Particle Swarm Optimization Algorithm for Mixed-Variable Nonlinear Problems
Many engineering design problems involve a combination of both continuous anddiscrete variables. However, the number of studies scarcely exceeds a few on mixed-variableproblems. In this research Particle Swarm Optimization (PSO) algorithm is employed to solve mixedvariablenonlinear problems. PSO is an efficient method of dealing with nonlinear and non-convexoptimization problems. In this paper,...
متن کاملA generalized implicit enumeration algorithm for a class of integer nonlinear programming problems
Presented here is a generalization of the implicit enumeration algorithm that can be applied when the objec-tive function is being maximized and can be rewritten as the difference of two non-decreasing functions. Also developed is a computational algorithm, named linear speedup, to use whatever explicit linear constraints are present to speedup the search for a solution. The method is easy to u...
متن کاملSolving Fully Fuzzy Linear Programming Problems with Zero-One Variables by Ranking Function
Jahanshahloo has suggested a method for the solving linear programming problems with zero-one variables. In this paper we formulate fully fuzzy linear programming problems with zero-one variables and a method for solving these problems is presented using the ranking function and also the branch and bound method along with an example is presented.
متن کاملAn Evolutionary Algorithm for Zero-one Nonlinear Optimization Problems Based on an Objective Penalty Function Method
In many evolutionary algorithms, as fitness functions, penalty functions play an important role. In order to solve zero-one nonlinear optimization problems, a new objective penalty function is defined in this paper and some of its properties for solving integer nonlinear optimization problems are given. Based on the objective penalty function, an algorithm with global convergence for integer no...
متن کامل